Домой Аксессуары Местоположение тактильных рецепторов на коже рук. Соматосенсорная система

Местоположение тактильных рецепторов на коже рук. Соматосенсорная система

В соматосенсорную систему включают систему кожной чувствительности и чувствительную систему скелетно-мышечного аппарата, главная роль в которой принадлежит проприорецепции.

1) Получение информации от рецепторов.

2) Переработка информации о разных раздражитеях.

Мехонарецепторы

Ноцирецепторы

Терморецепторы

Проприорецеторы

Быстро адаптирующиеся: рецепторы волосяных фолликул, Тельца Пачини, Тельца Мейсснера, Колбочки Краузе, Свободные н. окончания типа Аδ.

Медленно адаптирующиеся: Диски Меркеля, Тельца Руфини, свободные н. окончания типа С.

Рецепторы волосяных фолликулов

Расположение: во внутреннем слое кожи, окружают волосяную луковицу

Адаптация: быстрая. Разряд прекращается через 50-500 мс после включения стимула

Рецепция: на движение, подергивание волосков, но не на степень их смещения

Иннервация: одно нервное волокно может обслуживать несколько сотен фолликулов, а каждый фолликул может иннервироваться множеством рецепторов

Тельца Пачини (пластинчатое тельце, Фатера-Пачини тельце)

Строение : имеет строение луковицы или матрешки. Заключено в слизистые оболочки из соединительной ткани. Внутри расположено эллиптическое нервное оконание.

Размер : 0,5 – 0,7 мм в поперечнике и около 1-2 мм в длину

Расположение : как в волосистой так и в гладкой коже, глубокие слови кожи (в жировой ткани подкожных слоев, глубже других р-ров), мало в губах, подушечках пальцев

Рецепция : сильные и резкие изменения давления на кожу. Не реагируют на постоянное давление. Вибрация: реагируют на вибрацию от 70 до 1000 Гц. Однако наибольшая чувствительность на частоте вибрации 200-400 Гц, в этом случае способны реагировать на деформацию кожи всего на 1 мкм.

Тельца Пачини не отключаются при местной анестезии

Тельца Мейснера

Расположены в поверхностных слоях гладкой кожи (сосочковый слой дермы) и на слизистых оболочках. Больше всего их на губах, ладонях, пальцаз, подошвах

Являются аналогом рецепторов волосяных фолликулов для гладкой кожи.

Строение : капсула из соединительной ткани овальной формы (длина 40-180 мкм, ширина 30-60 мкм)

Нервные окончания образуют внутр капсулы спираль, ветви к-ой изолированы друг от друга оболочками шванновских клеток.

Капсула прикреплена к вышележащим слоям эпителия коллагеновыми волоками (что повышает механическую связь между ней и поверхностью кожи)

Рецепция : реагируют на прикосновние или давление

Быстро адаптирующиеся. Разряд прекращается через 50-500 мс после включения стимула

Реагируют на низкочастотную вибрацию 10-200 Гц, максимум на частоте 30 Гц.

Имеют малые рецептивные поля

Колбочки Краузе (Терминальные колбы Краузе, луковицы Краузе)

Расположение : эпидермис гладкой кожи и слизистые оболочки. Есть только у млекопитающих, не относящихся к приматам (у людей нет)

Строение: схожи с тельцами Мейснера. Пластинчатая капсула, внутри к-ой спиралевидное или стержневидное нервное окончание

Рецепция : долгое время считалось, что это р-ры холода, но это не так. Колбы Краузе реагируют на низкочастотную вибрацию 10-100 Гц.

Медленно адаптирующиеся тактильные рецепторы

1) Диски Меркеля

2) Тельца Руффини

3) Свободные нервные окончания (тип С)

Иллюзия сенсорного контраста

Диски Меркеля

Расположение: на участках гладкой кожи располагаются небольшими группами в самых нижних слоях эпидермиса, откуда направляются в сосочки дермы. На волосистых участках располагаются в специальных тактильных дисках (тельца Пинкуса-Игго) – небольших возвышениях кожи.

Строение: капсулы с крупными неправильной формы ядрами и микроворсинками

Иннервация: на три тактильного диска может приходиться одно нервное волокно, а внутри тактильных дисков все диски Меркеля (30-50 шт) обслуживаются 1ой нервной ветвью.

Рецепция: реагируют на прикосновение или давление. Стимул – прогибание эпидермиса при действии механ стимула. Медленно адапт.р-ры. Продолжают генерировать потенциалы, даже когда давление поддерживается долгое время. Имеют малые рецептивные поля.

Тельца Руффини (Циллиндры Руффини, окончания Руффини)

Расположение : нижний слой дермы и слизистой оболочки

Рецепция : считалось, что они реагируют на тепло, но это не так. Реагируют на длительное смещение кожи, давление.

Медленно адапт, продолжают генерировать птенциалы, даже когда давление поддерживается долгое время.

Имеют большие рецепторные поля.

Свободные нервные окончания

Расположение : в эпидермисе и дерме, самые распростр р-ры. Обнаружены практически во всех участках кожи.

Строение : не имеют специализированных детекторных кл-ок. от окончаний отходят волокна типа А дельта (миелинизированные) или типа С(немиелинизированные).

Рецепция : возбуждаются при очень слабом, околопороговом раздражении. Реагируют толькона 1 градацию стимула (есть-нет). Могут детектировать слабые механ стимулы, движ по коже (ползущее насекомое)

Адаптация : волокна типа А дельта… ?

Передний спиноталамический путь – см фото

· Первый нейрон – аксоны в составе задних корешков входят в задний рог СПМ, тело в СПМ ганглии, дендрит оканчивается механорецепторами кожи

· Второй нейрон – аксоны переходят на др сторону СПМ и образуют передний спинотаамический тракт, тело и дендриты в кл-ках студенистого вещ-ва (задний рог СПМ)

· Третий нейрон – аксоны: часть в постцентральную извилину, часть в верхнюю теменную дольку, тело и дендриты в задних вентролатеральных ядрах таламуса

Проприорецепция.

Проприоцепция представляет собой восприятие позы и движения нашего собственного тела. Поза определяется углом расположения костей в каждом суставе, устанавливаемым либо пассивно (внешними силами), либо активно (мышечным сокращением). С их работой сочетаются сигналы от вестибулярного органа, что позволяет определять положение тела в поле земного притяжения. Проприорецепторы участвуют также в нашей сознательной и бессознательной двигательной активности. Афферентные и эфферентные системы в сочетании создают осознаваемые проприоцептивные ощущения. Если ощущение, например, движение в суставе сохраняется после того, как один из компонентов системы устранён, из этого не обязательно следует, что он в норме не участвует в формировании данного ощущения. Это соответствует принципу избыточности нервной системы. Афферентная информация может модулироваться в синапсах нисходящим торможением.
В синапсах, через которые активность афферентов передаётся центральному соматосенсорному нейрону, оно может изменять величину рецептивного поля этого нейрона, если афференты, идущие от периферической части рецептивного поля, тормозятся.

Виды проприорецепторов

Млекопитающие:

1) Мышечные веретена

Мышечные волокна млекопитающих

1) Экстрафузальные. Выполняют всю работу сокращения мышц

2) Интрафузальные . В них отсутствует актин и миозин. Они предназначены для детектирования натяжения при помощи р-ров, называемых мышечные веретена

· Статические. Реагируют при постоянном натяжении мышцы. Детектируют силу сокращения

· Динамические. Реагируют на вкл-выкл растягивания мышц. Детектируют скорость сокращения

2) Сухожильные органы Гольджи

В сухожилиях – часть мышцы, предст собой соединительнотканную формацию, посредством к-ой мышцы прикрепляется к кости.

СОГ – гроздевидные чувствительные окончания(2-3 мм в длину и 1-1,5 мм в ширину). Возбуждаются при сокращении мышц из-за натяжения сухожилий.

3) Рецепторы суставов

· В суставных сумках: окончания наподобие телец Руффини . Медленно адаптируются. Каждое имеет свой «угол возбуждения»

· В суставных связках: окончания наподобие телец Гольджи и телец Пачини . Активируются при движении сустава к крайним положениям или когда его вращение выходит за пределы нормы.

Нервные пути

1) Корковый проприоцептивный путь – точно локализованные осознанные проприорецептивные ощущения

· Путь Бурдаха

· Путь Голля

Его поражения:

1. Утрата чувства положения и локомоции. При закрытых глазах пациент не может определить положение своих конечностей

2. Астереогноз. При закрытых глазах больной может узнать и описать предмет на ощупь.

2) Пути мозжечкового направления – неосознаваемая координация движений

· Путь Флексинга

· Путь Говерса

Поражения этих путей: расстройство координации движений. Становится невозможно без зрительного контроля выполнить любое даже самое простейшее движений без грубых ошибок. Например, дотронуться до кончика носа.

Схема тела

Схема тела – неосознаваемые представления о положении собственного тела и его частей в пространстве, о его границах и динамических хар-ках.

Свойства схемы тела (по Хаггарду и Уолперту)

1) Пространственное кодирование

3-мерные пространственные координаты тела и объектов вокруг. Представление о границах тела может не соответствовать его реальным границам (теннис – воспр продолжение тела как конец ракетки).

2) Модульность

Схема тела не представлена в какой-то единой обл мозга. Различные части тела – в разных областях коры.

3) Адаптивность

Представления о схеме собственного тела развиваются в ходе жизни.

Соматосенсорная пластичность

4) Обновляемость при движении

После выполнения движений схема тела изменяется согласно новому положению тела

5) Интерперсональность

Св с зеркальными нейронами.

6) Надмодальность

Оливер Сакс. «Человек, который выпал из кровати» Схема тела не связана с опр сенсорной модальностью. Она включает проприорецепцию, зрение, тактильную информацию и пр. Сенсорная инфа перекодируется в абстрактную, надмодальную форму.

7) Когерентность

При формировании схемы тела интегрируется информация от разных органов чувств.


Похожая информация.


3 белковые рецепторы

белковые молекулы или молекулярные комплексы, расположенные на поверхности клетки или внутри ее, которые способны специфически связывать другие молекулы, несущие внешние для клетки регуляторные сигналы (напр. , гормоны, нейромедиаторы, факторы роста, лимфокины, лекарство и т.п. ), или реагировать на физические факторы (напр. , свет). Благодаря конформационным изменениям, индуцируемым этими сигналами, Б.р. запускают определенные каскадные биохимические процессы в клетке, в результате чего реализуется ее физиологический ответ на внешний сигнал. Большинство Б.р. локализовано в плазматической мембране и представляет собой пронизывающие мембрану гликопротеиды. Они взаимодействуют с белковыми или пептидными гормонами, а также с низкомолекулярными биорегуляторами, напр. с простагландинами, аминокислотами. Рецептор света - родопсин - локализован в мембранных структурах сетчатки глаза. Внутриклеточные Б.р. обычно локализованы в ядре и взаимодействуют со стероидными гормонами и гормонами щитовидной железы (производными тирозина). Известно несколько механизмов, с помощью которых активированные Б.р. запускают биохимические процессы в клетке; напр. , при взаимодействии ацетилхолина с никотиновым холинорецептором (чувствителен не только к ацетилхолину, но также и к никотину), локализованным в постсинаптической мембране, открывается канал для ионов натрия. Увеличение внутриклеточного содержания Na + приводит к деполяризации мембраны, что обусловливает передачу нервного импульса. Другая группа мембранных Б.р. сопряжена с мембрано-связанными регуляторными ферментами, в частности с аденилатциклазой, гуанилатциклазой, фосфолипазой С. К Б.р., активирующим аденилатциклазу, относятся, напр. , β-адренергические рецепторы, рецепторы глюкагона, тиреотропного гормона; к Б.р., ингибирующим этот фермент, относятся α2-адренергические рецепторы, некоторые опиоидные рецепторы (см. опиоидные пептиды), рецепторы соматостатина и др. Сопряжение Б.р. со всеми указанными ферментами осуществляется через регуляторные Г-белки (см. Г-белки). Некоторые мембранные Б.р., обладают собственной ферментативной (протеинкиназной) активностью (напр. , рецепторы инсулина и различных факторов роста). Эти протеинкиназы регулируют активность различных белков путем их фосфорилирования по остаткам тирозина. Специфические гормоны стимулируют протеинкиназную активность и аутофосфорилирование молекул Б.р., что необходимо для преобразования ими регуляторных сигналов. Б.р. могут состоять из одной или нескольких полипептидных цепей, ассоциированных благодаря невалентным взаимодействиям или сшивкам дисульфидными связями; напр. , Б.р. для инсулина состоит из четырех полипептидных цепей двух типов (α2β2), которые сшиты дисульфидными связями. Впервые термин "рецепторная субстанция" предложен Дж. Лэнгли в 1906 г. для обозначения компонентов мышечной клетки, за которые конкурируют никотин и кураре, блокирующие передачу сигнала от нервного окончания к мышце.

4 адренергические рецепторы

5 рецепторы сетчатки

6 сиротские рецепторы

7 тактильные индикаторные клавиши

8 адренергические рецепторы

9 активируемые протеазами рецепторы

10 альфа-рецепторы

11 вкусовые рецепторы

12 гептасульфидные рецепторы циклодекстрина

13 глутаматные рецепторы

14 кальцийчувствительный рецепторы

15 колбочковые рецепторы сетчатки

16 меланокортиновые рецепторы

17 метаботропные рецепторы глутамата

18 многофункциональные рецепторы, такие как авидин или стрептавидин

19 мотилиновые рецепторы

Различают четыре вида кожных ощущений: тактильное (ощущение прикосновения, давления), тепловое, холодовое и болевое.

Ощущение прикосновения отличается от ощущения давления, например языком нельзя определять пульс.

Количество тактильных рецепторов около 500000, холодовых - 250000, тепловых - 30000. Больше всего тактильных рецепторов располагается на кончиках пальцев, ладонной поверхности кисти, подошве ног, языке, кайме нижней губы.

Прикосновение возбуждает быстро адаптирующиеся рецепторы, а давление - медленно адаптирующиеся. К вибрации особенно чувствительны кончики пальцев и ладони. Тактильные рецепторы, или механорецепторы, реагируют и на температурные раздражения. Температурных рецепторов много на лице, особенно на губах и веках. Тепловые рецепторы расположены глубже холодовых, на периферии роговицы, и в конъюнктиве глаза их нет.

До настоящего времени не установлена зависимость между структурой рецепторов кожи и их функцией. Возможно, различие ощущений зависит не только от раздражения разных рецепторов, а от особенностей пространственного и временного распределения импульсов в афферентных нервных волокнах и скоростей их проведения при раздражениях разного качества и интенсивности (Нейф, 1927). Предполагается, что свободные нервные окончания - органы болевых ощущений. Нервные волокна часто оканчиваются не между клетками, а внутри самой клеточной цитоплазмы. Это важный факт, так как адекватным раздражителем для боли является всякий повреждающий агент, вызывающий разрушение клетки или .

Существует мнение о единстве периферических рецепторов и периферических нервных путей для болевых и тактильных ощущений. Раздражение рецепторов тактильных ощущений при подпороговых (для боли) и пороговых раздражениях вызывает «подболевые» тактильные ощущения, которые при усилении раздражения превращаются в ощущение боли.

Имеются, однако, классические примеры специальной болевой рецепции: таковы боли, возникающие при раздражениях роговицы и век, а также при раздражениях чревного нерва, которые никаких других ощущений не дают. Предполагается, что рецепторы для восприятия тепла и холода одни и те же. Они отличаются только глубиной расположения в толще кожи. Рецепторы холода расположены более поверхностно.

Существование в кожном анализаторе четырех раздельных видов рецепторов подвергается в настоящее время сомнению. Весьма относительна также точность подсчета рецепторов кожи, особенно, если учесть обнаруженное в лабораториях Н. А. Рожанского и Л. А. Орбели «дежурство» кожных рецепторов, заключающееся в их поочередном возбуждении, что обнаруживается по появлению двигательных рефлексов при раздражении отдельных пунктов кожи. В тот момент, когда один из кожных рецепторов возбудим, другой не возбудим. А в следующий момент, наоборот, первый становится невозбудимым, а второй возбудимым. Это «дежурство» может быть обусловлено сменой возбуждения и торможения в нейронах кожного анализатора.

Возбудимость кожного анализатора достигает максимума к 17-27 годам и резко изменяется в зависимости от функционального состояния головного мозга. Например, она резко уменьшена при утомлении и при сильных эмоциях.

Одновременное раздражение других анализаторов (зрения, слуха, обоняния, вкуса) также значительно снижает возбудимость анализатора кожи. Даже боль средней силы может быть значительно уменьшена при одновременных раздражениях других анализаторов.

Абсолютный порог раздражения тактильных рецепторов неодинаков в различных участках тела, наименьший - на языке и носу.

Возбудимость тактильных рецепторов наибольшая при частотах механических смещений, или колебаний, 40 - 500 Гц. Точность оценки частоты колебаний, преобразуемых в нервные импульсы, достигает 5 - 10%.

Порог различения (разностный) около 1/30 (см. с. 578).

Временной порог , т. е. кратчайший промежуток времени между двумя последовательно различаемыми раздражениями наименьший для тактильного анализатора (около 2 мс).

Следовательно, наиболее функционально подвижным, или лабильным, является тактильный анализатор, затем следует холодовой, тепловой и, наконец, болевой. Болевой анализатор обладает наименьшей функциональной подвижностью, отдельные болевые раздражения в наименьшей степени различаются последовательно во времени.

Одновременный пространственный порог - наименьшее расстояние между двумя точками, на котором они ощущаются раздельно при одновременном раздражении, - различен для всех четырех видов кожной рецепции, он наименьший для тактильной и наибольший для болевой рецепции.

Способность соединять тактильные ощущения, получаемые из разных рецептивных полей, в одно комплексное ощущение вырабатывается в течение жизни благодаря образованию временных нервных связей в больших полушариях. Например, прикосновение к шарику боковыми поверхностями пальцев дает одно ощущение, а при перекрещивании пальцев получаются два ощущения двух шариков (опыт Аристотеля).

Тактильные раздражения очень тонко локализуются. Эта способность вырабатывается в течение жизни. В ее уточнении участвуют, кроме тактильных рецепторов, раздражения рецепторов зрения, проприоцепторов и др. Относительно порога тактильных раздражений следует отметить, что он нарастает с возрастом. Следовательно, у стариков способность локализовать тактильное раздражение падает.

В наименьшей степени может быть локализировано болевое раздражение. Кроме того, сильная боль сопровождается иррадиацией возбуждения в центральной нервной системе, что делает невозможной ее локализацию.

Адаптация в кожном анализаторе

Анализатор кожи обладает адаптацией. Быстрая адаптация к раздражению приводит к тому, что мы ощущаем не само давление, а только изменения давления. При регистрации потенциалов в афферентных нервах, несущих импульсы от тактильных рецепторов, обнаруживается, что при непрерывном давлении на эти рецепторы только в течение первых секунд частота импульсов доходит до 250-350 в 1 с, а затем она резко уменьшается или импульсы прекращаются, что выражается в уменьшении интенсивности ощущения. При опускании руки в теплую воду мы испытываем тепло только короткое время, а затем происходит адаптация кожного анализатора к температурным раздражениям, и тепло не ощущается. При смене теплой на воду более низкой температуры мы короткое время испытываем холод, а затем становится безразличной. Регистрация потенциалов обнаруживает уменьшение частоты афферентных импульсов или их прекращение. Существует также адаптация и при болевых раздражениях. Укол в кожу ощущается только в течение короткого времени, а затем ощущение боли прекращается, хотя игла продолжает оставаться в коже. Чем медленнее и чем сильнее болевое раздражение, тем продолжительнее поток афферентных импульсов и, следовательно, тем медленнее адаптация к боли.

Предполагается, что в ответ на раздражение болевых рецепторов ускоряется окисление глюкозы и других веществ в нейронах, участвующих в болевом рефлексе. Это приводит к дефициту кислорода в них, что прекращает проведение болевых импульсов и вызывает естественное торможение боли.

Существуют последовательные ощущения при раздражениях тактильных, температурных и болевых рецепторов кожи. После окончания раздражения этих рецепторов продолжаются тактильные, температурные и болевые ощущения, затем они исчезают и через некоторое время вновь появляются. Это волнообразное затухание и восстановление кожных ощущений обусловлено волнообразным характером нервного процесса в кожном анализаторе. На раздражения кожи образуются условные рефлексы. При действии условных тепловых раздражителей кожи быстро возникает торможение.

Проблема боли, протопатическая и эпикритическая чувствительность

Особое значение для сохранения жизни имеют болевые ощущения. Боль - показатель нарушения нормальных процессов, сигнал опасности, вызывающий специальные защитные реакции (сокращения поперечнополосатой мускулатуры, сдвиги дыхания, кровообращения и т. д.), обеспечивающие сохранность данного индивида и вида.

Однако сильное (повреждающее), а также длительное действие «болевого» раздражителя, хроническое раздражение болевых анализаторов превращают защитную реакцию организма во вредоносную, являющуюся причиной вторичных нарушений физиологических процессов.

Поэтому практически крайне важна разработка приемов прекращения болевой сигнализации выключением рецепторов или афферентных нервов и путей, которое приводит к устранению болевых ощущений.

Возбуждение хвостатого ядра подавляет болевые ощущения.

Боль вызывается также гуморальным путем - появлением в гистамина, вещества Р, серотонина, кининов и других (в долях мкг). Все эти вещества подавляют внутритканевое дыхание. В крови есть кининогены, которые при действии особых ферментов превращаются в кинины - сложные соединения аминокислот, например при появлении контактного фактора XII во время свертывания крови. Гистамин образуется из аминокислоты гистидина и, так же как и другие вещества, вызывающие боль, очень быстро разрушается .

Различают протопатическую - болевую и грубую температурную чувствительность - и эпикритическую - тактильную и тонкую температурную чувствительность. Протопатическая чувствительность филогенетически более древняя и затормаживается филогенетически более молодой эпикритической чувствительностью (Гэд). Такое разделение кожной чувствительности недостаточно обосновано.

Тактильная чувствительность (лат. tactilis - осязаемый, от tango - касаюсь)

ощущение, возникающее при действии на кожную поверхность различных механических стимулов. Т. ч. - разновидность осязания (См. Осязание); зависит от вида воздействия: прикосновения, давления, вибрации (ритмичного прикосновения). Тактильные стимулы воспринимаются свободными нервными окончаниями, нервными сплетениями вокруг волосяных фолликулов, тельцами Пачини (рис. 1 и 2 ), Мейснера и Меркеля дисками (см. Мейснера тельца , Меркеля клетки) и др. Несколько дисков Меркеля или телец Мейснера могут иннервироваться одним нервным волокном, составляя своеобразное тактильное образование. Инкапсулированные Рецепторы (типа телец Пачини и Мейснера) определяют порог Т. ч.: они возбуждаются при прикосновении и вибрации и быстро адаптируются. Ощущение давления возникает при возбуждении медленно адаптирующихся рецепторов (таких, как свободные нервные окончания). По сравнению с др. кожными ощущениями Т. ч. быстро уменьшается при длительном раздражении, так как в целом процессы адаптации в тактильных рецепторах развиваются весьма быстро. Наиболее дифференцированная Т. ч. возникает при раздражении кончиков пальцев рук, губ, языка, где располагается большое количество разнообразных механорецепторных структур. Корковая часть тактильного Анализатор а представлена в постцентральной и передней эктосильвиевой извилинах (см. Осязания органы).

Лит.: Ильинский О. Б., Физиология кожной чувствительности, в кн.: Физиология сенсорных систем, ч. 2, Л., 1972 (Руководство по физиологии); Есаков А. И., Дмитриева Т. М., Нейро-физиологические основы тактильного восприятия, М., 1971.

О. Б. Ильинский.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Тактильная чувствительность" в других словарях:

    ТАКТИЛЬНАЯ ЧУВСТВИТЕЛЬНОСТЬ - (англ. tactile sensitivity) разновидность кожной чувствительности, которая связана с механическими раздражителями. С Т. ч. связаны ощущения прикосновения (см. Тангорецепторы), давления и частично вибрации (см. Вибра … Большая психологическая энциклопедия

    - (от лат. tactilis осязаемый, от tango трогаю, касаюсь), ощущение, возникающее при действии на кожную поверхность разл. механич. раздражителей; разновидность осязания. Тактильные рецепторы расположены на поверхности кожи и нек рых слизистых… … Биологический энциклопедический словарь

    ТАКТИЛЬНАЯ ЧУВСТВИТЕЛЬНОСТЬ - (от лат. tactilis осязание...) разновидность кожной чувствительности, с которой связаны ощущения прикосновения, давления и частично вибрации. Совокупность органов человека (рецепторы кожи, проводящие нервные пути, соответствующие центры в коре… … Энциклопедический словарь по психологии и педагогике

    Тактильная чувствительность - разновидность осязания, обеспечивающая различение формы и размера предмета, характера его поверхности, связанный с ощущением прикосновения предмета. Возможен благодаря наличию тактильных экстерорецепторов. Наибольшее количество тактильных… … Физическая Антропология. Иллюстрированный толковый словарь.

    ТАКТИЛЬНАЯ ЧУВСТВИТЕЛЬНОСТЬ - [от лат. tactilis осязательный] разновидность осязания; отражение в сознании некоторых механических свойств предмета, действующих на соответствующие рецепторы кожной поверхности в качестве одного из видов раздражений прикосновения, давления,… … Психомоторика: cловарь-справочник

    Тактильная чувствительность - Разновидность кожной чувствительности, с которой связаны ощущения прикосновения, давления и частично вибрации … Адаптивная физическая культура. Краткий энциклопедический словарь - ЧУВСТВИТЕЛЬНОСТЬ, свойство животных и человека воспринимать раздражения из внешней среды и от собственных тканей и органов. У животных, обладающих нервной системой, специализированные чувствительные клетки (рецепторы) имеют высокую избирательную… … Современная энциклопедия

    Чувствительность способность организма воспринимать раздражения, исходящие из окружающей среды или из собственных тканей и органов, и отвечать на них дифференцированными формами реакций. Виды чувствительности Общая чувствительность Поверхностная… … Википедия

Тельца Мейсснера , расположенные в поверхностных слоях собственно кожи (дермы) губ и собственно слизистой оболочки рта, реагируют на прикосновение. При усилении механического раздражения возбуждаются диски Меркеля , которые локализуются в глубоких слоях кожного эпидермиса и слизистого эпителия. Ощущения давления и вибрации возникают при раздражении телец Пачини , расположенных в подкожной клетчатке и подслизистом слое. В связи с глубоким залеганием телец Пачини, местная апликационная анестезия поверхностных слоев слизистой оболочки и кожи не устраняет ощущения давления и вибрации, о чем необходимо предупредить пациента перед операцией в этих условиях.

От большинства тактильных механорецепторов ротового отдела сенсорные сигналы поступают в ЦНС по миелинизированным нервным волокнам Аb со скоростью 30-70 м/с. Центральный отдел тактильной сенсорной системы располагается в задней центральной извилине коры больших полушарий.

Тактильные ощущения можно вызвать раздражением только определенных участков кожи и слизистых, которые называются чувствительными тактильными точками . Пространственный порог тактильной чувствительности обратно пропорционален количеству рецепторов на единицу площади и прямо пропорционален расстоянию между рецепторами. Пространственный порог тактильных ощущений на кончиках пальцев, языка и губ, значительно ниже (1-3 мм), чем на других участках тела (50-100 мм). Это обусловлено различием плотности рецепторов на единицу поверхности.

Наиболее плотно тактильные рецепторы расположены на кончике языка, слизистой оболочке и красной кайме губ, что необходимо для апробации пищи на съедобность. Наиболее чувствительна к механическим раздражениям верхняя губа. Относительно высоким уровнем тактильной чувствительности отличается слизистая оболочка твердого неба, что обеспечивает формирования пищевого комка в процессе жевания. Наименьшей тактильной чувствительностью обладает слизистая оболочка вестибулярной поверхности десен. При этом в области десневых сосочков отмечается убывающий градиент чувствительности от резцов к молярам.

Метод исследования абсолютных или пространственных порогов тактильной чувствительности, называют эстезиометрией . Изучение тактильного восприятия слизистой оболочкой полости рта позволяет прогнозировать индивидуальные особенности адаптации к съемным зубным протезам у больных с частичной или полной адентией. Протез является инородным телом, раздражающим тактильные рецепторы, что ведет к рефлекторной гиперсаливации, возникновению рвотного рефлекса, нарушению координации жевания, глотания и речи. Однако большинство тактильных рецепторов относится к быстроадаптирующимся. В связи с этим, а также вследствие отсутствия неадаптирующихся тактильных рецепторов, существенных проблем с привыканием к зубным протезам, как правило, не возникает. При этом наряду с приспособлением рецепторного аппарата происходит адаптация проводникового и центрального отделов анализатора. Это является результатом высокой пластичности нервных центров, обеспечивающих быстрое приспособление функций жевания, глотания и речи к новым условиям. Зубной протез перестает ощущаться как инородное тело, наблюдается восстановление эффективности жевания, угасает рвотный рефлекс, нормализуются саливация, глотание и речь.


Температурная рецепция в ротовом отделе обеспечивает восприятие термических раздражителей - тепла и холода. Терморецепторы, воспринимающие холод, гистологически представлены колбами Краузе, расположенными в эпидермисе красной каймы губ и эпителии слизистой оболочки рта. Тепловые рецепторы – тельца Руффини, локализуются глубже - в собственно дермальном слое губ и в собственно слизистой оболочке рта. От рецепторов холода отходят тонкие миелинизированные волокна типа Аd со скоростью проведения возбуждения 5-15 м/с, а от рецепторов тепла – безмиелиновые волокна типа С (0,5-3 м/с). Центральный отдел температурной сенсорной системы располагается в задней центральной извилине коры больших полушарий.

Как правило, тепловые и холодовые рецепторы возбуждаются соответствующими по качеству стимулами. Однако в определенных условиях холодовые рецепторы могут воспринимать тепловые раздражители при температуре свыше 45 0 С (например, при погружении в горячую ванну). В зависимости от исходных условий, одна и та же температура может вызывать и ощущение тепла и ощущение холода.

Преобладание в коже и слизистых терморецепторов, реагирующие на холодовые стимулы (10:1), и глубокое залегание тепловых рецепторов, обусловливают более высокую чувствительность к холоду. При этом холодовая чувствительность снижается от передних отделов рта к задним, а тепловая, наоборот, повышается. Наибольшей чувствительностью к температурным раздражениям отличаются кончик языка и красная кайма губ, что обеспечивает апробацию пригодности потребляемой пищи. Малочувствительна к холоду и теплу слизистая оболочка щек. Полностью отсутствует восприятие тепла в центре твердого неба, а центральная часть задней поверхности языка не воспринимает ни тепловые ни холодовые воздействия.

Способностью к восприятию температуры обладают рецепторы дентина и пульпы зубов. Порог холодовой чувствительности для резцов в среднем составляет 20 0 С, а для клыков, премоляров и моляров – 11-13 0 С. Порогом тепловой чувствительности для резцов является температура около 52 0 С, для остальных зубов – 60-70 0 С.

Исследование температурной чувствительности путем определения тепловых или холодовых порогов называют термоэстезиометрией . Для исследования температурной чувствительности зубов их орошают горячей или, чаще, холодной водой либо используют ватный тампон, смоченный в эфире, который, испаряясь, охлаждает зуб. Если температурные раздражители вызывают адекватные ощущения тепла или холода, это свидетельствует о нормальном состоянии тканей зуба. При кариесе холодовое раздражение вызывает боль. При пульпите боль вызывают тепловые стимулы, а холодовые, наоборот, уменьшают ее. Депульпированный зуб не реагирует ни на холод, ни на тепло.

Тактильная и температурная чувствительностьротового отделадополняетсямышечно–суставной рецепцией , которая обеспечивает чувство пространственного положения нижней челюсти относительно верхней, ощущение ее движения, восприятие сократительного усилия мышц. Этот вид чувствительности обеспечивается проприорецепторами , которые локализуются в интрафузальных мышечных волокнах, височно-нижнечелюстных суставах, в связочном аппарате жевательных и мимических мышц. Сенсорные сигналы от проприорецепторов поступают в ЦНС преимущественно по толстым миелинизированным нервным волокнам типа Аa со скоростью 70-120 м/с. Центральный отдел проприоцептивной сенсорной системы располагается в задней центральной извилине коры больших полушарий.

Важнейшей сенсорной функцией ротового отдела является болевая рецепция , которая обеспечивает восприятие стимулов, способных привести к повреждению или разрушающих ткани организма. В отличие от всех других видов сенсорных модальностей болевая рецепция не имеет адекватного раздражителя. Практически любой сверхсильный стимул может вызывать ощущение боли.

Боль - это универсальное неприятное сенсорное ощущение и эмоциональное переживание, связанное с угрозой разрушения или уже произошедшим повреждением ткани.

В соответствии с биологической значимостью различают два вида боли: физиологическую и патологическую . Основные задачи физиологической боли:

1) информирование организма о любых формах угрозы его существованию или целостности,

2) участие в организации адаптивного поведения, направленного на предупреждение распространения и ликвидацию повреждения или устранение его угрозы.

Боль обеспечивает мобилизацию большинства систем организма для защиты от повреждения тканей и сопровождается развертыванием оборонительного поведения. В зависимости от ситуации ощущение боли и сопровождающие ее поведенческие и рефлекторные реакции могут сознательно подавляться. Однако, гуморальные, а также вегетативные сдвиги сохраняются в любом случае, что является неизбежным признаком повреждения тканей. Поэтому при купировании болевых синдромов целесообразно использовать лекарственные препараты, способные стабилизировать физиологические функции организма.

После организации защитного поведения боль утрачивает свои адаптивные функции и приобретают значение самостоятельного патогенетического фактора. Для многих заболеваний боль – одно из первых, а иногда и единственное проявление патологии и главный диагностический индикатор.

По месту приложения повреждающего фактора выделяют два рода боли: соматическую и висцеральную . Соматическая боль связана с экстремальными внешними воздействиями, а висцеральная обусловлена внутренними патологическими процессами.

Соматическая боль подразделяется на два типа: первичную и вторичную . Первичная (эпикритическая ) боль проявляется сразу после повреждения, быстро осознается, легко детерминируется по качеству и локализации, исчезает после прекращения вредоносной стимуляции, сопровождается адаптацией. Вторичная (протопатическая ) боль проявляется через 0,5-1 с после первичного ощущения, медленно осознается, плохо детерминируется по качеству и локализации, сохраняется длительное время после прекращения стимуляции, не сопровождается адаптацией.

В настоящее время имеется три основных теории механизмов восприятия боли:

1) теория интенсивности,

2) теория специфичности,

3) теория распределения импульсов.

Согласно теории интенсивности сверхсильная стимуляция рецепторов, независимо от их модальности, вызывает высокоамплитудные РП и высокочастотную разрядную деятельность сенсорных нейронов, которая трасформируется ЦНС в ощущение боли (амплитудно-частотное кодирование).

Согласно теории распределения импульсов повреждающие стимулы вызывают особый порядок следования (паттерн) афферентных импульсов, который отличается от разрядной деятельности, вызванной индифферентными для организма факторами (интервально-импульсное кодирование). При этом ЦНС преобразует поступающий афферентный поток в ощущение боли.

В противоположность этому теория специфичности предполагает (по аналогии с другими сенсорными системами) существование специальных рецепторов и афферентов, реагирующих возбуждением только на такие по интенсивности стимулы, которые могут повредить ткань (двоичное и пространственное кодирование).

Таким образом, раздражитель может вызвать ощущение боли только в том случае, если под его влиянием формируется особая, алгогенная сигнализация - поток афферентных возбуждений, в котором по амплитудно-частотно-пространственному принципу закодирована информация об угрозе разрушения или уже произошедшим повреждении тканей организма.

Сенсорная система, обеспечивающая восприятие вредоносных раздражителей, называется ноцицептивной . Рецепторы этой системы – ноцицепторы , подразделяются на четыре вида:

1) механочувствительные, которые возбуждаются в результате механического смещения рецепторной мембраны,

2) хемочувствительные, реагирующие на химические вещества, которые выделяются поврежденными клетками (ацетилхолин, гистамин, серотонин, простагландины),

3) термочувствительные, которые активируются под влиянием термических стимулов, выходящих за пределы физиологического диапазона,

4) полимодальные, реагирующие как на химические вещества, так и на интенсивные механические и термические стимулы.

Ноцицепторы относятся к неадаптирующимся, высокопороговым рецепторам. В коже лица и слизистой оболочки рта, а также периодонте, пульпе и дентине зубов они преимущественно представлены свободными нервными окончаниями.

Выраженной болевой чувствительностью отличается слизистая оболочка вестибулярной поверхности нижней челюсти в области боковых резцов. Наименьшей болевой чувствительностью характеризуется язычная поверхность слизистой оболочки десен. На внутренней поверхности щеки в области верхних моляров имеется узкий участок слизистой, абсолютно лишенный болевой чувствительности.

Исключительно сильное болевое ощущение возникает даже при легком прикосновении к пульпе зуба, что обусловлено высокой плотностью высокочувствительных нервных окончаний и волокон, которые проникают в дентин вплоть до эмалево-дентинной границы. На 1 см 2 дентина приходится 15000-30000 болевых рецепторов, на границе эмали и дентина количество ноцицепторов доходит до 75000, тогда как в коже их число не превышает 200. Все это является причиной особой жестокости боли, возникающей под влиянием температурных, химических и механических раздражителей при повреждении и разрушении тканей зубов, в том числе и при их лечении.

Сенсорные сигналы от ноцицепторов ротового отдела поступают в ЦНС по миелинизированным нервным волокнам типов Аb и Аd, а также по безмиелиновым волокнам группы С, большинство которых проходит в составе второй и третей ветви тройничного нерва. Информация от ноцицепторов о неблагополучии тканей ротового отдела поступает в заднюю центральную извилину и к медиальным отделам орбитальной коры больших полушарий.

Тесная взаимосвязь между различными ядрами тройничного нерва и их взаимодействие с ядрами ретикулярной формации обусловливает широкую иррадиацию возбуждения, затрудняющую локализацию зубной боли и ее отражение (проецирование) в достаточно отдаленные участки лица, головы и шеи.

Иногда после операции удаления пораженного зуба сохраняется ощущение боли, которая называется фантомной . Фантомные боли обусловлены тем, что предшествующая удалению ноцицептивная афферентация от пораженного зуба вызывает нейрогенную (центральную ) сенситизацию - увеличение чувствительности, связанное с повышением возбудимости в проводниковом и центральном отделах ноцицептивной системы. Дополнительное раздражение во время операции вызывает появление стойких патологически усиленных очагов циркуляции возбуждения в ЦНС, которое воспринимается клетками коры мозга как длительные, часто непрерывные боли. Лечебные мероприятия местного характера не приводят к уменьшению или прекращению таких болей, так как их источник лежит в структурах ЦНС, на которые следует воздействовать, активируя антиноцицептивную систему мозга.

Основные функции эндогенной антиноцицептианой системы – ограничение уровня болевого возбуждения, а также регуляция и поддержание порога болевой чувствительности. Это обеспечивается за счет механизмов пресинаптического и постсинаптического торможения ноцицептивных нейронов на всех уровнях ЦНС. В реализации влияния антиноцицептивной системы участвуют опиатные, адренергические, дофаминергические и серотонинергические структуры мозга. Ведущее значение при этом имеет выработка опиатных морфиноподобных соединений – эндорфинов, энкефалинов и динарфинов.

Болевой порог является результатом взаимодействия ноцицептивной и антиноцицептивной системы, которая находится в состоянии постоянной тонической активности. Устранение постоянного тормозного влияния антиноцицептивной системы может привести к состоянию гипералгии или даже возникновению самопроизвольных болевых ощущений. Повышение тонической активности антиноцицептивной системы приводит к развитию врожденных аналгий – нечувствительности к боли.

Страх, подавляя активность антиноцицептивной системы, резко усиливает реакцию на боль, снижают порог болевой чувствительности, а состояния типа агрессии-ярости, напротив, увеличивают его. Переоценка интенсивности боли может быть связана с подготовкой и ожиданием медицинских манипуляций. Однако болевая чувствительность снижается, когда человек заранее предупрежден о характере предстоящего воздействия. Разъяснение или отвлекающие беседы перед операцией существенно ослабляет болевые ощущения и снижают потребность в обезболивающих средствах.

Специфической особенностью сенсорной функции ротового отдела является вкусовая чувствительность .

Вкус – ощущение, возникающее в результате восприятия четырех элементарных вкусовых качеств химических веществ, растворенных в ротовой жидкости – сладкого , горького , кислого и соленого .

Сенсорная система, которая осуществляет контактное восприятие и оценку вкусовых свойств химических веществ, действующих на орган вкуса , называется вкусовым анализатором .

Орган вкусачеловека представлен вкусовыми почками которые локализуются, преимущественно, в сосочках языка : грибовидных , листовидных и желобовидных . Грибовидные сосочки располагаются, главным образом, на слизистой кончика языка, листовидные сосочки - вдоль боковой поверхности задних отделов языка, а желобовидные – поперек спинки, у корня языка. Отдельные вкусовые почки имеются на мягком и твердом небе, задней стенке глотки, миндалинах, надгортаннике и гортани.

Новое на сайте

>

Самое популярное